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Abstract 
The microabsorption of X-rays diffracted from planar 
granular powder specimens is caused by bulk porosity 
and surface roughness of the material. Methods of 
stochastic geometry are used to describe the 
geometrical characteristics of powder by volume frac- 
tion, mean chord length of powder particles, and 
density-density correlation function (covariance). 
Towards the surface of the specimen, the volume 
fraction of powder particles decays continuously from 
the bulk value to zero. Within the framework of the 
kinematic theory, analytical expressions are derived 
for both bulk and surface contributions to the micro- 
absorption of symmetrically diffracted X-rays in ran- 
domly packed powder specimens with particles of 
irregular shape. Previous theoretical estimates and 
empirical formulae are discussed as limiting cases of 
the present more general results. 

Introduction 
The granular structure of powder specimens causes 
an angle-dependent contribution to the absorption of 
the incident and diffracted beams. This effect has been 
studied experimentally by de Wolff (1956) and by 
Suortti (1972; referred to as S) who measured the 
reduction of specimen fluorescence radiation due to 
granularity. Trucano & Batterman (1970) investigated 
the effect of porosity of amorphous powders, analys- 
ing diffuse scattering. Though the experimental 
results differ in some details, the intensity reduction 
due to granularity is described by a constant term 
proportional to volume fraction of pores, linear 
absorption coefficient, and mean chord length of par- 
ticles, whereas the contribution of surface roughness 
is a smooth function of scattering angle. To our 
knowledge, the paper of S essentially represents the 
actual level of understanding of the effect of micro- 
absorption. 

Previous theoretical work on X-ray absorption in 
powder specimens suffers from a fragmentary 
description of porosity and surface roughness. Har- 
rison & Paskin (1964) analysed the case of an isolated 
cubic pore and estimated correction terms for a 
dilutely porous solid. Otto (1984) calculated numeri- 
cally the absorption of a special two-dimensional 
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computer model, in which the grains of the powder 
are simulated by circles of equal diameter. He was 
able to reproduce the experimental results of S quali- 
tatively. On the other hand, a quantitative correction 
of X-ray scattering from granular specimens is desir- 
able in certain cases (e.g. Valvoda & Capcovfi, 1984). 
For these reasons, a refined analytical treatment of 
porosity and surface roughness seems to be useful. 

In the present paper, we calculate the kinematical 
X-ray power reflected from a plane powder sample. 
The powder sample is described by the very general 
and variable three-dimensional Boolean model that 
has been developed within the framework of stochas- 
tic geometry (Stoyan, 1979; Stoyan, Kendall & 
Mecke, 1986). Contrary to the models of Harrison & 
Paskin (1964) and Otto (1984), our theory is not 
restricted to powder particles of certain regular shape. 
We derive analytical expressions for the contribution 
of both bulk porosity and surface roughness to the 
absorption of X-ray power. The relation of our for- 
mulae to previous estimates is discussed. Numerical 
results are given for various values of parameters and 
are compared to the experimental curves after S. 

Structure model for powder 
We consider statistically isotropic irregularly packed 
powder specimens. Corresponding to the lines of the 
Boolean model, the structure of such types of speci- 
mens is characterized in the following way: points 
Pi = (x, Yi, z~) are distributed randomly in the three- 
dimensional space. They are called germs. The num- 
ber N(G)  of germs in an arbitrary region G obeys a 
Poisson distribution. Further, a sequence of isotropic 
independent identically distributed bounded random 
close sets A1, A2, . . .  is generated. The An are called 
primary grains. Now, at each germ Pi one sample A~ 
of the primary grains is placed. The union of all 
primary grains A~ situated at P~, or, in other words, 
that part of the space which is covered by one or by 
several primary grains, represents a random set A. In 
the present case, we use Poisson polyhedra as primary 
grains. A Poisson polyhedron is a typical mosaic stene 
of a random tessellation of space by random planes 
characterized by its mean width b. We use the comple- 
ment A t of the random set A as a structure model 
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for irregularly packed powder specimens (see Fig. 1). 
The mean chord length of A c is known (Stoyan, 
Kendall & Mecke, 1986); it will be related to the 
mean chord length of powder particles. This means 
that the pores of the specimens are described by the 
union of randomly distributed Poisson polyhedra. 

For the calculation of the absorption length of a 
ray reflected from the powder, an expression for the 
probability P of finding two points Q, Q' with dis- 
tance r both belonging to A c will be necessary. This 
probability is given by the covariance C(r). 

Obviously, C(r ~O) = a and C ( r  ~ o o ) =  a 2 where 
a is the volume fraction of powder particles. For a 
Boolean model with Poisson polyhedra we have 
(Sonntag, Stoyan & Hermann, 1981) 

C(r )=a2exp[ - ( l na )exp ( - r / f l ) ] ,  fl=2b/3. 
(1) 

If a is sufficiently high (0.7 <~ a < 1), (1) can be expan- 
ded in terms of (1 - a)  and we obtain 

C ( r ) = a 2 + a ( 1 - a ) e x p ( - r / / 3 ) ,  (2) 

a simple type of correlation function that has been 
discussed already by Debye & Bueche (1949), but 
without a geometrical interpretation of/3. Whereas 
the bulk properties of the powder specimens are 
characterized by a, 13 and the covariance C(r), we 
describe the surface structure of the specimen by 

a = a ( z ) = ~ a o [ 1 - e x p ( - z ) ] ,  z>-O 
[0, otherwise (3) 

with z = t~ to, t is the coordinate perpendicular to the 
surface of the specimen (see Fig. 1). Parameter to 
characterizes the surface roughness and ao is the 
packing fraction of the bulk material. 

Absorption correction 

The absorption path length of a ray reflected from 
point Q depends on the scattering angle 0 and the 
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Fig. 1. AbsorPtion length L A in a powder specimen for the sym- 
metrical case. L is the geometrical path length of the ray in the 
specimen. LA is determined by the integral over all increments 
dr lying in powder particles. 

distance t of Q from the surface (Fig. 1). Since the 
point of reflection Q is, of course, always situated in 
A c the probability of finding another point Q' in A c 
on the incident or reflected ray with distance r from 
Q is equal to C(r)/a. Therefore, the absorption 
length LA of the ray depicted in Fig. 1 is 

Q x 2 

LA = ~ C(r)/a d r +  ~ C(r)/a dr 
x l  Q 

L / 2  

=2 ~ C(r)/a dr, (4) 
0 

where L is the geometrical length of the beam in the 
specimen. For simplicity, the integrals are evaluated 
for symmetrically diffracted beams. In (4) a statistical 
average over a sufficiently large number of powder 
particles is carried out. Inserting (2) and (3) into (4) 
we obtain 

p . L A / e =  zz/sin 0 + ( 1 - a o ) [ 1 - e x p  ( -zz / s in  O)]/ao 

- ( r / s i n  0)[1 - e x p  ( -z ) ]  

+ { 1 - e x p [ - ( z + s i n  O)z/sin 0]} 

x z / ( z+s in  0); 

e = 2~/3C~o, z = to~~3. (5) 

Of course, the special cases LA = L (for ao-)1) and 
LA = ao L (for/3/L-~ 0) follow from (5) for vanishing 
surface roughness (to = 0). 

According to Harrison & Paskin (1964) and S we 
write 

I = lo(1- P)/2tx = loJ (6) 

where P is the term resulting from both bulk granular- 
ity and surface roughness (Io = normalized intensity). 
Now the problem is reduced to the evaluation of the 
integral 

J = ~ exp (--I,I.LA) d V~ Qo 
Vs 
0(3 

=~ a(z) exp[-tZLA(Z)]/3z/sinOdz (7) 
0 

(Qo = cross section of incident beam, Vs = volume of 
the sample). We insert (3) and (5) into (7). Terms of 
the type exp [c' exp (-c"t)]  with c '=  e(1 - ao)/ao or 
c '=  ez/(z+sin O) are replaced by 1+ c' exp (-c"t) 
with c"> 0. The mean chord length [ of the powder 
particles is, within the present model, given by the 
mean chord length of the complement of the random 
set A: [=-/3/ lnao (Stoyan, Kendall & Mecke, 
1986). Consequently, the condition for the validity of 
the approximation mentioned above reads as follows 

/ z /<  [ - 2 ( 1 -  ao)In ao]-'. (8) 

For example, we have/x[,~ 1.5 and/~[,~ 5 for ao -- 0.5 
and 0.7, respectively. 



H. H E R M A N N  A N D  M. E R M R I C H  403 

As a final result, we obtain 

P = 1 - e x p  I - e ( 1  - ao)/Oeo + g - f ]  

x ~ (-1)"gn+lcn/n!, 
r l=O 

cn=l / (g+n) (g+n+l )  

+[e(1-Oto)/ao]/(h+ n)(h+ n+ 1) 

+ f / ( h +  n+ 1) (h+  n + 2 )  

f =  e r / ( ¢ + s i n  0), g = ez/sin O, 

h = (1 + e)¢/s in  0. (9) 

Discussion 

(a) Vanishing surface roughness 

Parameter z = to/fl = - t o / l l n  ao describes the 
degree of surface roughness. It is essentially the ratio 
of the thickness to of the surface defined in (3) and 
the mean chord length f of powder particles. The 
limiting case z ~  0 of vanishing surface roughness is 
realized by a planar cut through an infinitely extended 
porous material. From (9) we obtain for r ~  0 

Po = 1 - [ 1  +(1-ao)e2/ao(l+ e)] 

x exp [ - (1  - t~o) e/C~o]. (10) 

This means: 
(i) In the case of vanishing surface roughness the 

absorption correction does not depend on angle 0. 
The fictitious increase of Po for 0-> 90 ° suggested by 
Harrison & Paskin (1964) is not found. 

(ii) For the case e = 2/z/3ao'e 1, which is generally 
realized in experiments, 

P o = 2 / z / 3 ( 1 - O t o ) = 2 / z r ( 1 - a o ) l n  O~o 1 ( l l a )  

results from (10). For high volume fraction ao of 
powder particles we have 

Po = 2/zl(1 - ao) 2 . ( l i b )  

( b ) Weak surface roughness 

We expand (9) up to terms of order e and z2/sin 2 0 
and obtain 

P(O)= Po+ Ps(O) 

Ps=  2/Z3ao(z/sin 0 ) ( 1 -  r / s in  0) (12) 

where Po [see (11)] and Ps describe the absorption 
correction due to bulk porosity and surface roughness, 
respectively. The separation of P into a constant bulk 
term Po and the angle-dependent term Ps 
derived theoretically from our structure model for 
irregularly packed powder specimens is in accordance 
with the corresponding experimental results of S. 
In this paper, S discussed a surface roughness 
model and the corresponding formula P~= 
Cl [1 -exp  ( -c2/s in  0)] containing two adjustable 

parameters cl and C2o If we expand this formula into 
a power series and compare the coefficients with our 
results (12) the empirical parameters cl and c2 can 
be determined. We obtain c~ = e /2  and c2 = 2¢. Thus 
c~ is given by the linear absorption coefficient/z, the 
mean chord length / of powder particles, and the 
packing fraction ao whereas c2 describes the degree 
of surface roughness z. 

( c ) Extension to lower volume fraction of powder 
particles 

One of the most important points of the present 
study is the application of an analytical expression 
for the covariance C(r) derived from a well defined 
structure model for powder specimens. The covari- 
ance presented in (1) is valid for arbitrary volume 
fraction ( 0 -  c~ _ 1) of powder particles. For sim- 
plicity, we calculated the absorption correction term 
P using the first-order approximation (2) which is 
correct for high volume fraction c~ of powder parti- 
cles. Expanding (1) in a power series and taking into 
account second-order terms, we have for lower c~ 
values 

C ( r ) =  32+  a ( 1 -  c~) exp ( -r / f l )  

- ½ c ~ ( 1 - a )  2 exp ( - r / f l ) [1-exp  (-rift)]. 

We consider the case of vanishing surface roughness 
r = 0 and/~/3 ,~ 1 and obtain for the bulk contribution 
to the absorption correction 

Po=2tzfl(1-Oto)[1-(1-ao)/4]. (13) 

According to (11), the absorption term Po for ¢ = 0 ,  
/z/3,~1 calculated with covariance (2) is Po = 
2/zfl(1 - t~o). This means that expression (11) for the 
bulk contribution to microabsorption calculated 
within the limit of high t~ is, in cases of low volume 
fraction t~ of powder particles, an upper limit for Po. 

( d ) Numerical results 

In Fig. 2 the typical behaviour of the microabsorption 
dependence on the scattering angle is illustrated. The 
absorption is nearly constant at high scattering angles 
but increases rapidly at low 0. Experimental data after 
S are compared with the theoretical results. We 
assume the experimental values for ao to be most 
reliable, whereas l is affected by some uncertainties 
arising, for example, from the finite resolution of 
micrographs from which the mean chord lengths of 
the powder specimens are determined. Variation of 
/z r and z with fixed ao leads to a good fit of the 
experimental points by the theoretical curves 1 (ao = 
0.69) and 4 (ao = 0.60), respectively. The theoretical 
values for /z  I are smaller than the experimental ones 
which may be caused by the experimental uncertain- 
ties mentioned above. 
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The low values for the surface roughness parameter 
(0.05 and 0.08, respectively) are reasonable, since the 
samples had been prepared under high pressure 
against a polished steel plate. According to the 
definition in (5) the thickness of the surface region, 
where the structure deviates markedly from that of 
the bulk material, is to = r/3. For a0 = 0"6 to 1,/3 is of 
the order of  the diameter of pores. Hence to for the 
experimental cases discussed is about 1/10 to 1/20 
of  the mean pore diameter. The influence of surface 
roughness on the absorption is shown separately in 
Fig. 3. 

For growing degree ~- of surface roughness, the 
absorption increases. The range at 0 ~< 90 ° where Ps 
is nearly constant becomes smaller with increasing ~'. 
The simple expression given by S represents, with 
parameters adjusted to the present model, a good 
approximation for very weak surface roughness but 
fails for z > 0.1 at low 0. 

The dependence of Ps o n / z  i- is similar to that of 
z [of. (12)]. Sijace the penetration depth of  a ray in 
comparison with to diminishes with growing/z  f, the 
influence of  the surface region 0-< t _  to increases 
compared with the bulk effect. For this reason, it is 
plausible that increasing ~- and /z[ leads to similar 
changes of the Ps(O) curves. 

In Fig. 4 the bulk contribution Po to the absorption 
correction is plotted versus volume fraction of  pores. 
Po increases with 1 - So for all values of/z ] according 
to (10). The increase of Po with 1 -  So is essentially 
nonlinear and shows, for a o ~ l ,  a parabolic 
behaviour [see ( l l b ) ] .  A linear behaviour of Po = 
Po(1 - So) had been suggested by S who separated Po 
from the experimental values for the absorption by 
subtracting a simple model function [see part (b) of 
this section] describing the surface contribution P~ 

from the experimental P. An unambiguous experi- 
mental determination of the bulk contribution should 
be carried out using samples without surface rough- 
ness which may be prepared by a planar cut through 
a rigid porous material. 

C o n c l u d i n g  r e m a r k s  

The present stochastic model describes the X-ray 
microabsorption of three-dimensional randomly 
packed flat specimens prepared from powder parti- 
cles of irregular shape. Both bulk (Po) and surface 
(Ps) contributions to the microabsorption are treated 
simultaneously and are presented in a concise 
analytic form. The microabsorption P = 
Po(ao , /Z/ )+  Ps(ao,/~r, 0) is a function of volume 
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Fig. 3. Dependence of the surface contribution Ps (0) on the degree 
~" of surface roughness (Itl=0.15, ao=0.70 ). 1: z=0 .1 ;  2: 
r = 0-2; 3: 7" = 0-4; 4: ~" = 0-6; full curves present model, broken 
curves formula of Suortti (1972) with parameters adjusted to the 
present model. 
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Fig. 2. Dependence of microabsorption P on scattering angle 0. 
Parameters (ao, Itl, r) of theoretical curves are 1: (0.69, 0.06, 
0.05); 2: (0.69, 0.06, 0.10); 3: (0.69, 0.10, 0.10); 4: (0.60, 0.06, 
0.08); 5: (0.60, 0.10, 0.10); 6: (0.60, 0.15, 0.10). Parameters of 
the experimental points after Suortti (1972): filled circles a o = 
0.69, Itl =0.10; open circles ao=0.60, Itl=0.15. 

Fig. 4. Dependence of bulk contribution Po to absorption correc- 
tion on volume fraction 1 - a o of pores for different values It/ 
(full curves It/= 0.1; broken curves It/= 0.2); th = theoretical 
curves calculated from (10); S=estimate after Suortti (1972) 
given by the difference between experimental data and P, calcu- 
lated from a simple surface roughness model. 
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fraction ao of powder particles, linear absorption 
coefficient/~, mean chord length lo fpowder  particles 
and scattering angle 0. There are no dramatic effects 
of microabsorption if the packing fraction of powder 
particles and the scattering angle are not too small. 

The theoretical results agree well with the experi- 
mental data after Suortti (1972) especially with 
respect to the dependence of the microabsorption on 
the scattering angle. For practical use, the approxi- 
mate formulae (11), (12) should be sufficient in most 
cases. 

The present method is applicable not only to pow- 
ders but also to other heterogeneous specimens such 
as sinter materials. In forthcoming papers, the follow- 
ing related problems will be analysed: (i) micro- 
absorption in quantitative phase analysis; (ii) 
influence of regularity of packing of powder particles 
on microabsorption. 

The stimulating interest of Drs J. Henke, D. 
Stephan and N. Mattern is gratefully acknowledged. 
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Abstract 

A systematic classification of complex topological 
types for polypeptide-chain folding in the antiparallel 
/3 form is proposed. Three well known simple topo- 
logical types, I~, m, g, were chosen as the basic ones: 
single /3 strand, hairpin of two strands and simple 
Greek key type of four strands. The new topologi- 

cal ly  allowed motifs are formed of a combination of 
the three basic motifs. All spatial motif types possible 
with this basis were considered for more complicated 
double Greek key motifs. This was done on the basis 
of a complete set of 14 basic spatial motifs of simple 
Greek key topology. Analysis of about 20 globular 
proteins shows that some spatial motifs appear to be 
realized as the main part of the chain fold of the 
molecule. This suggests that chain folds of antiparallel 
/3 proteins are necessarily conditioned by simple 
topological requirements. 

1. Introduction 

Polypeptide-chain folding in a globular protein 
molecule is evidently governed by general regu- 
larities. In particular, it depends on topological 
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requirements for the main-chain fold and the packing 
symmetry of the repeated motifs (Ptitsyn & Finkel- 
stein, 1980; McLachlan, 1980; Richardson, 1981). In 
recent years a number of new three-dimensional pro- 
tein structures have been determined, and for many 
known protein structures the data have been consider- 
ably improved at higher resolution. This promotes a 
more successful study of the principles of protein 
structure. Two general topological motifs of the up- 
and-down and simple 'Greek key' types were shown 
to exist in globular fl proteins (Richardson, 1977). A 
chain fold for such proteins or domains was shown 
to have a highly limited number of topological 
variants (Ptitsyn, Finkelstein & Falk, 1979; Finkel- 
stein, Ptitsyn & Bendsko, 1979). Some of the possible 
spatial patterns for the simple 'Greek key' topology 
were shown to be part of the molecular architecture 
in/3 proteins (Efimov, 1982). Therefore, the next step 
in studying spatial motifs for the antiparallel/3 struc- 
ture in proteins became possible. This consists of the 
deduction and classification of all topologically 
allowed spatial motifs. A preliminary communication 
on this topic has recently been published (Chirgadze, 
1985). The practical significance of this study is a 
complete summary of spatial motifs of the antiparallel 
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